```
67,081.÷
31.=
2,163.9032258*
,
2,163.9032258×
,10.%
216.39032258+
216.39032258+
2,330.29354838*
```

ANGIE

	PRETR	EATMENT MON	IITORING REPO	<u>ORT</u>	同區	CEIVE
IAME:	Crompton Colors Incom	porated				ADD 2 2 2000
MAILING ADDRES	S: 199 Benson Road, Mai	l Stop 2-4, Middleb	oury CT 06749-000	01		APN 2 2 2003
ACILITY LOCATION	ON: 52 Amsterdam Street, 1	Newark NJ			IIVIT I	
ATEGORY & SUB	PART: Unknown		OU7	TLET #:	1	
CONTACT OFFICIA	AL: Mr. George Colle	ntine	TEL	EPHONE: _	(203) 573-2825	
IEW CUSTOMER I	D / OUTLET ID:20630008-1	OLD OUTL	ET DESIGNATIO	ON: 1		8 p
MONITO Start	RING PERIOD End		Average		Maximum	
		Regulated Flow-gal/	'day 2111		2111	
03 01 09	03 31 09	Total Flow-ga			2111	
MO DAY YR	MO DAY YR	S	216			80
	romagnetic flowmeter (Toshiba Mod n meter reading on 2/27/09 @ 3:00 P		note converter/disp	play (Toshiba	Model #LF602F	7)
		Dia motor road	ing was commuted	ut 3/31/07 (b)	7.45 MM (See et	over letter explanation).
roduction Rate (if ar	pplicable) Not Applicable					
DADAL CECEP		T MASS O	R CONCENTRA	TION	# OF	SAMPLE TYPE
		WASSU	R CONCENTRA	HUN] # Or	
PARAMETER	1 (51)		MAXIMIM	IINITS	SAMPLES	COMP/GRAB
	Sample Measurement	MON AVG 92.3	MAXIMUM 92.3	UNITS mg/l	SAMPLES 1	COMP/GRAB Grab
Biochemical Ox (BOD ₅)	Sample Measurement Permit Requirement	MON AVG	92.3	UNITS mg/l mg/l	SAMPLES 1	COMP/GRAB Grab
Biochemical Ox	Permit Requirement Sample Measurement	MON AVG 92.3 0 (No < 0.00040	92.3	mg/l		
Biochemical Ox (BOD ₅) Cadmium	Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No < 0.00040 0.19	92.3 Limit) < 0.00040	mg/l mg/l mg/l mg/l	1	Grab Grab
Biochemical Ox (BOD ₅)	Permit Requirement Sample Measurement Permit Requirement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215	92.3 Limit)	mg/l mg/l mg/l mg/l mg/l	1	Grab
Biochemical Ox (BOD ₅) Cadmium	Permit Requirement Sample Measurement Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02	92.3 Limit) < 0.00040 0.0215	mg/l mg/l mg/l mg/l mg/l mg/l	1 1	Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium	Permit Requirement Sample Measurement Permit Requirement Sample Measurement Permit Requirement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027	92.3 Limit) < 0.00040	mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1	Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper	Permit Requirement Sample Measurement Permit Requirement Sample Measurement Permit Requirement Sample Measurement Permit Requirement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54	92.3 Limit) < 0.00040 0.0215 < 0.0027	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1	Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium	Permit Requirement Sample Measurement Permit Requirement Sample Measurement Permit Requirement Sample Measurement Permit Requirement Sample Measurement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010	92.3 Limit) < 0.00040 0.0215	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1	Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper	Permit Requirement Sample Measurement Permit Requirement Sample Measurement Permit Requirement Sample Measurement Permit Requirement Sample Measurement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1	Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury	Permit Requirement Sample Measurement Permit Requirement Sample Measurement Permit Requirement Sample Measurement Permit Requirement Sample Measurement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010	92.3 Limit) < 0.00040 0.0215 < 0.0027	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1	Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury	Permit Requirement Sample Measurement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1	Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc	Permit Requirement Sample Measurement Permit Requirement Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar	Permit Requirement Sample Measurement Sample Measurement Permit Requirement Sample Measurement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1	Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material	Permit Requirement Sample Measurement Permit Requirement Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10 100	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD €€E	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10 100 CODE=E	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material	Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD €€E	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10 100 CODE=E	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement Sample Measurement Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD €€E	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10 100 CODE=E	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD €€E	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10 100 CODE=E	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD E 13 70 0 (No	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10 100 CODE=E Limit)	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement Sample Measurement Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD E 13.79 0 (No	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10 100 CODE=E	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD E 18 70 0 (No	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10 100 CODE=E Limit)	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD E 13.79 0 (No	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD E 18 70 0 (No	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10 100 CODE=E Limit)	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l		Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD E 13 70 0 (No	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	1 1 1 1 1 1	Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD E 18 70 0 (No	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l		Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD E 13 70 0 (No	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 <10 100 CODE=E Limit)	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l		Grab Grab Grab Grab Grab Grab Grab Grab
Biochemical Ox (BOD ₅) Cadmium Copper Lead Mercury Nickel Zinc Non-Polar Material Total Toxic	Permit Requirement Sample Measurement Permit Requirement	MON AVG 92.3 0 (No <0.00040 0.19 0.0215 3.02 <0.0027 0.54 <0.00010 0.080 0.0068 5.9 0.698 1.67 <10 COD E 13 70 0 (No	92.3 Limit) < 0.00040 0.0215 < 0.0027 < 0.00010 0.0068 0.698 < 10	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l		Grab Grab Grab Grab Grab Grab Grab Grab

PRETREATMENT MONITORING REPORT

APR 2 2 2009

Certification of Non-Use if applicable (use add	itional sheets): Not Applicable.	
		Secretaria de la constanta de
	· · · · · · · · · · · · · · · · · · ·	
Compliance or non compliance statement with o	compliance schedule (use additional sheets if necess	sary) for every
	to the second	
parameter used: All reported analytical res	ults comply with permit requirements	
Explain Method for preserving samples: Sam	ples were collected in laboratory-supplied contained	ers with the appropriate preservatives (e.g.,
		1. 0
hydrochloric acid, nitric acid) in accordance wi	th the requirements for the specific analytical meth	lods. Samples were labeled with appropriate
information, such as project name, sample iden	tification, collection date and time, and sampler's i	initials. All containers were placed in an ice-filled
cooler until delivery at the laboratory. A compl	eted chain-of-custody form accompanied the samp	les at all times.
a system designed to assure that qualified person or persons who manage the system, is, to the best of my knowledge and belief,	personnel properly gather and evaluate the info or those persons directly responsible for gathe	r my direction or supervision in accordance with ormation submitted. Based on my inquiry of the ring the information, the information submitted nere are significant penalties for submitting false
403.6(a)(2)(ii) revised by 53 FR 40610, (October 17, 1988	
	In a signature of Principal	_
	Signature of Principal	
	Executive or Authorized Agent	
	Mr. George Collentine	_
	Manager	<u>. </u>
	Type Name and Title	
	4/2/19	

PVSC FORM MR-I REV: 5 3/91 P2

Analytical Results Summary	1
General Information Chain of Custody Laboratory Chronicles Methodology Review Data Reporting Qualifiers Non-Conformance Summary	12 14 20 24 27
GC/ MS Forms and Data (Volatiles) Results Summary and Chromatograms Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Summary Spike Recovery Summary Internal Standard Area and RT Summary	3 (3 (3 (3 (4 (6 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5 (5
GC/ MS Forms and Data (Semivolatiles) Results Summary and Chromatograms Tuning Results Summary Method Blank Results Summary Calibration Summary Surrogate Compound Recovery Summary Spike Recovery Summary Internal Standard Area and RT Summary	74 74 86 92 100 100 112
Metals Forms and Data Analytical Results Summary Blank Results Summary Calibration Summary ICP Interference Check Results Summary Spike Sample Recovery Summary Sample and MS Duplicate Results Summary Laboratory Control Samples Results Summary Serial Dilution Summary Analysis Run Log	11! 11! 12: 12: 12: 13: 13: 13:
General Chemistry Forms	14 (14 (14 (
Subwork	15
This is the Last Page of the Document	18

Analytical Results Summary

G416

TestAmerica Edison

1

Lab Sample No: 993423

Lab Job No: G416

Date Sampled: 03/31/09

Matrix: WATER Level: LOW

Date Received: 03/31/09 Date Analyzed: 04/07/09 GC Column: Rtx-VMS Instrument ID: VOAMS6.i Lab File ID: f47445.d

Purge Volume: 5.0 ml Dilution Factor: 250.0

VOLATILE ORGANICS - GC/MS METHOD 624

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Chloromethane	ND	110
Bromomethane	ND ·	110
Vinyl Chloride	ND	60
Chloroethane	ND	110
Methylene Chloride	ND	100
Trichlorofluoromethane	ND	92
1,1-Dichloroethene	ND	120
1,1-Dichloroethane	ND	65
trans-1,2-Dichloroethene	ND	98
cis-1,2-Dichloroethene	ND	70
Chloroform	ND	50
1,2-Dichloroethane	ND	68
1,1,1-Trichloroethane	ND	95
Carbon Tetrachloride	ND	85
Bromodichloromethane	ND	62
1,2-Dichloropropane	ND	120
cis-1,3-Dichloropropene	ND	32
Trichloroethene	N D	90
Dibromochloromethane	ND	68
1,1,2-Trichloroethane	ND	55
Benzene	ND	60
trans-1,3-Dichloropropene	ND	40
2-Chloroethyl Vinyl Ether	ND	62
Bromoform	ND ND	52
Tetrachloroethene	ND	100
1,1,2,2-Tetrachloroethane	ND	88
Toluene	ND	7 5
Chlorobenzene	21000	62
Ethylbenzene	ND	100
Xylene (Total)	ND	100

Lab Sample No: 993423

Lab Job No: G416

Date Sampled: 03/31/09 Date Received: 03/31/09 Date Analyzed: 04/07/09 GC Column: Rtx-VMS Instrument ID: VOAMS6.i Lab File ID: f47445.d

Matrix: WATER Level: LOW

Purge Volume: 5.0 ml Dilution Factor: 250.0

VOLATILE ORGANICS - GC/MS TENTATIVELY IDENTIFIED COMPOUNDS METHOD 624

COMPOUND NAME 1. Benzene, 1,2-dichloro- 2. 33			I	
1. Benzene, 1,2-dichloro- 2.	COMPOUND NAME	RT		Q
2.		=======		=====
2.	1. Benzene, 1.2-dichloro-	10 84	1000	
4. 5. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 24. 25. 26. 27. 28. 29.	2	10.01	1000	
4. 5. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 24. 25. 26. 27. 28. 29.	<u> </u>			
5. 6. 7. 8. 9. 9. 10. 9. 11. 9. 13. 9. 14. 9. 15. 9. 16. 9. 19. 9. 20. 9. 21. 9. 22. 9. 23. 9.	,			
6.				l i
7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	5			
8 9 10 11 11 12 13 14 15 16 17 18 19 20 20 21 21 22 23 24 25 26 27 28 29 29	6.			
9	7.	· · · · · · · · · · · · · · · · · · ·		
9	o	<u> </u>		
10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.		<u> </u>		
11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.				
13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	10.			
13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	11.			
13 .	12.			
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	13			
15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.	14			
16.	1 14.			
17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28.				
18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29.				
19. 20. 21. 22. 23. 24. 25. 26. 27. 28.	17.			
20. 21. 22. 23. 24. 25. 26. 27. 28.	18.			
21. 22. 23. 24. 25. 26. 27. 28. 29.	19	 		l
21. 22. 23. 24. 25. 26. 27. 28. 29.	1 20.			
22. 23. 24. 25. 26. 27. 28. 29.				l ———
23. 24. 25. 26. 27. 28. 29.				<u> </u>
24. 25. 26. 27. 28. 29.	, 44.			
25. 26. 27. 28. 29.	23.			
26. 27. 28. 29.	24			
26. 27. 28. 29.	26			
27. 28. 29.	2.3.			
28.	20.			
29.				
30.	29.			
	30			I
		l	1	l

TOTAL ESTIMATED CONCENTRATION

1000

G416

Lab Sample No: 993423

Lab Job No: G416

Date Sampled: 03/31/09 Date Received: 03/31/09
Date Extracted: 04/01/09
Date Analyzed: 04/06/09
GC Column: DB-5
Instrument ID: BNAMS2.i

Matrix: WATER Level: LOW

Sample Volume: 970 ml Extract Final Volume: 2.0 ml

Lab File ID: s41506.d

Dilution Factor: 100.0

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
Phenol	ND .	63
2-Chlorophenol	ND	110
2-Nitrophenol	ND	160
2,4-Dimethylphenol	ND	210
2,4-Dichlorophenol	ND	150
4-Chloro-3-methylphenol	ND	170
2,4,6-Trichlorophenol	ND	220
2,4-Dinitrophenol	ND	91
4-Nitrophenol	ND ·	90
4,6-Dinitro-2-methylphenol	ND	130
Pentachlorophenol	ND	210

Lab Sample No: 993423

Lab Job No: G416

Date Sampled: 03/31/09 Date Sampled: 03/31/09
Date Received: 03/31/09
Date Extracted: 04/01/09
Date Analyzed: 04/06/09
GC Column: DB-5
Instrument ID: BNAMS2.i
Lab File ID: s41506.d

Matrix: WATER Level: LOW

Sample Volume: 970 ml Extract Final Volume: 2.0 ml

Dilution Factor: 100.0

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

<u>Parameter</u>	Analytical Result <u>Units: uq/l</u>	Method Detection Limit <u>Units: ug/l</u>
N-Nitrosodimethylamine	ND	76
bis(2-Chloroethyl)ether	ND	90
1,3-Dichlorobenzene	ND	99
1,4-Dichlorobenzene	280	93
1,2-Dichlorobenzene	1200	110
bis(2-chloroisopropyl)ether	ND	88
N-Nitroso-di-n-propylamine	ND	76
Hexachloroethane	ND	93
Nitrobenzene	13000	99
Isophorone	ND	97
bis(2-Chloroethoxy)methane	ND	89
1,2,4-Trichlorobenzene	ND	94
Naphthalene	ND	22
Hexachlorobutadiene	ND	62
Hexachlorocyclopentadiene	ND	65
2-Chloronaphthalene	ND	110
Dimethylphthalate	ND	110
Acenaphthylene	ND	12
2,6-Dinitrotoluene	ND	130
Acenaphthene	ND	13
2,4-Dinitrotoluene	ND	120
Diethylphthalate	ND	80
4-Chlorophenyl-phenylether	ND	110
Fluorene	ND	16
N-Nitrosodiphenylamine	ND	110
4-Bromophenyl-phenylether	ND	120
Hexachlorobenzene	ND	• 33
Phenanthrene	ND	8.2
Anthracene	ND	12
Di-n-butylphthalate	ND	100
Fluoranthene	ND	13
Pyrene	ND	13
Benzidine	ND	740
Butylbenzylphthalate	ND	110

Lab Sample No: 993423 Lab Job No: G416

Date Sampled: 03/31/09 Date Received: 03/31/09 Date Extracted: 04/01/09 Date Analyzed: 04/06/09 GC Column: DB-5 Instrument ID: BNAMS2.i

Matrix: WATER Level: LOW

Sample Volume: 970 ml Extract Final Volume: 2.0 ml

Lab File ID: s41506.d

Dilution Factor: 100.0

SEMI-VOLATILE ORGANICS - GC/MS METHOD 625

<u>Parameter</u>	Analytical Result <u>Units: ug/l</u>	Method Detection Limit <u>Units: ug/l</u>
3,3'-Dichlorobenzidine Benzo(a) anthracene Chrysene bis(2-Ethylhexyl) phthalate Di-n-octylphthalate Benzo(b) fluoranthene Benzo(k) fluoranthene Benzo(a) pyrene Indeno(1,2,3-cd) pyrene Dibenz(a,h) anthracene Benzo(g,h,i) perylene Aniline	ND N	510 5.2 20 110 100 13 9.3 6.2 8.2 10 9.3
WIITTIRE	17000	55

Lab Sample No: 993423 Lab Job No: G416

Date Sampled: 03/31/09 Date Received: 03/31/09 Date Extracted: 04/01/09 Date Analyzed: 04/06/09

Matrix: WATER Level: LOW

Sample Volume: 970 ml Extract Final Volume: 2.0 ml

Dilution Factor: 100.0

GC Column: DB-5 Instrument ID: BNAMS2.i Lab File ID: s41506.d

SEMI-VOLATILE ORGANICS - GC/MS TENTATIVELY IDENTIFIED COMPOUNDS METHOD 625

COMPOUND NAME	RT	EST. CONC. ug/l	Q
1. Benzene, chloro- 2. 3.	4.17	12000	
4. 5. 6.			
8. 9.			
11. 12.			
14 15.			
16. 17. 18. 19.			
21.			
24. 25.			
27. 28.			
29. 30.			

TOTAL ESTIMATED CONCENTRATION

12000

G416

Lab Sample No: 993423

Lab Job No: G416

Date Sampled: 03/31/09

Matrix: WATER Level: LOW

Date Received: 03/31/09

METALS ANALYSIS

<u>Analyte</u>	Analytical Result <u>Units: ug/l</u>	Instrument Detection <u>Limit</u>	<u>Qual</u>	<u>M</u>
Cadmium	ND	0.40		p
Copper	21.5	3.7	В	P
Lead	ND	2.7		P
Mercury	ND	0.10		CV
Nickel	6.8	2.4	В	P
Zinc	698	5.8		P

Qual Column - Data Reporting Qualifiers (See Sec 2 of Report) M Column - Method Code (See Section 2 of Report)

General Information

Chain of Custody

G416

Chemtura Corporation 199 Benson Road Middlebury, CT 06749

203.573.2825 tel 203.573.2271 fax

April 21, 2009

Ms. Saramma John City of Newark Billing & Customer Service 920 Broad Street Room 115 – Water Accounting Newark, NJ 07102

RE:

March 2009 Monitoring Reports

Crompton Colors, Incorporated - Newark, NJ

Customer ID 20630008-1 Discharge Begun 17 July 2007

Dear Ms. John:

Chemtura Corporation (Chemtura) has prepared the attached User Charge Self Monitoring Report (PVSC Form MR-2). This form has been executed by Mr. George Collentine of Chemtura Corporation, the corporate successor to Crompton.

The groundwater recovery system has been in continuous operation since 23 April 2008. Upon arrival for the 31 March 2009 meter reading, ERM personnel noted that the security booth may have been vandalized by unknown or unauthorized person(s). Of particular note, the circuit breaker providing power to the flow meter, located in the security booth, was found to be in the 'OFF' position. ERM reset the circuit breaker and read the flow total on the meter. This reading was 657,349 totaling 24,189 gallons discharged, which appears low based on prior reporting months. As such, we have assumed a daily discharge rate of 2,111 gpd, which is our long-term average when operating the system. For the period of 27 February 2009 at 3:00 PM through 31 March 2009 at 9:45 AM, we have calculated a total discharge volume of 67,081 gallons data and this discharge rate.

Please contact me at (203) 573-2825 or me if you have any questions or require additional information.

Sincerely,

George P. Collentine Environmental Manager

cc:

Passaic Valley Sewerage Commissioners

File

enclosures

Apr 16, 2009

ERM

250 Phillips Blvd.

Suite 280

Ewing, NJ 08618

Attention: Mr. Marc Carver

<u>TestAmerica</u>

THE LEADER IN ENVIRONMENTAL TESTENS

777 New Durham Road Edison, NJ 08817 Tel 732 549 3900 Fax 732 549 3679 www.testamericainc.com Federal ID #:23-29199996

Laboratory Results

Job No. G416 - Chemtura Newark

Dear Mr. Carver:

Enclosed are the results you requested for the following sample(s) received at our laboratory on March 31, 2009.

Lab No.	Client ID	Analysis Required
993423	SysDis033109	PP VOA+15
		PP BNA+25
		Cd
		Cu
		Pb
		Hg
		Ni
		Zn
		TSS
		BOD
•		SGT 1664
• •		HEM 1664

This report is not to be reproduced, except in full, without the written approval of the laboratory.

TestAmerica Edison has following Laboratory Certifications: New Jersey(12028), New York(11452), Pennsylvania(68-00522), Connecticut(PH-0200), Rhode Island(LAO00132)

If you have any questions, please contact me at (732) 549-3900.

Very Truly Yours,

Joy Kelly

Project Manager

nelac*

The Leader in Environmental Testing

Jong Kelly

TAL - 0016 (0408)

Laboratory Certifications: New Jersey (12028), New York (11452), Pennsylvania (68-522), Connecticut (PH-0200), Rhode Island (132),

777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732) 549-3679

TestAmeric	\Box										777 Ne Edison Phone	777 New Durham Road Edison, New Jersey 086 Phone: (732) 549-3900	ham Ro Jersey 549-39	777 New Durham Road Edison, New Jersey 08817 Phone: (732) 549-3900 Fax: (732)
THE LEADER IN ENVIRONMENTAL TESTING		CHAIN OF CUSTODY / ANALYSIS REQUEST	CUST	ODY/	ANA	LYSIS	REC	UES	<u> </u>				. –	Page of
Name (for report and invoice) Marc Carve		Samplers Name (Printed)	Name (F	printed)	<u></u>		Site/I	Site/Project Identification	Identific	Identification		Newark	! \	
Company ERM		8.0.#94793	bL h	~			State	State (Location of site): Regulatory Program:	on of s rogran	ايزا	X	ž	H	Other:
Address	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Analysis Tur	maround Ti		₹	ANALYSIS REQUESTED (ENTER Y. BELOW TO INDICATE REQUEST)	VESTED (8	NTER %: BE	LOW TO INE	CATE REQU	EST)			LAB USE
City Luina State	State	Standard Rush Chrages Authorized For:	S Authorized	5	57 51	المح		۲	n		<u> </u>			Project I
Phone 895 0050 Fax	7	- Week	7[7]		+40	+ Av 1881 100	55-	/HEI	niwi	2000	742	les!	つし	N dob
Sample Identification	Date			No. of.	√99 <u>1894</u>			L95	رمو	200	-M			Sample
5ysD15033109	331 29 0920	1	¥°	9	X	×	×	×	×	×	X	X	×	4834
	•													1
	ù				+	-			-				1	
					T	-			+	-				V.
					\dashv	-								
						\perp			\dashv	+				
								\dagger	+	-	-			
Preservation Used: 1 = ICE, 2 = HCI, 3 = H ₂ SO ₄ , 4 = HNO ₃	$= H_2SO_4, \ 4 = HNO_3$	5 = NaOH		Soli	d	-	-	4	5	7 7 7:1	<u>ئر</u>	3.	71	
tana	ard)-Luckh-		#	dia	1	+			1	-				
	Company			Date / Time		Received by	>	║ '	$\ \ \ $		Company	any		Company Company
\ }	ただ		11/18/11	1 6.45		3	\$ in	$\setminus \mid$						
Relinquished by 2)	Company		Date	Date / Time 	<u> 8</u>	Received by 2)	<u>, </u>				Company	any		村。
Relinquished by	Company		Date	Date / Time	<u>ස</u> හ	Received by					Company	any	1	
slinquished by	Company		Date	Date / Time	- Par	Received by					Company	any		

Massachusetts (M-NJ312), North Carolina (No. 578)